Skip to main content

Making vanilla web-fontend (project with lit, web component) secured (discussions with chatGpt)

Query: I wn complete seperate .css/.scss and .html template file for my webcomponent.js like in angular. But with complete security. In lit. Use any js lib like domPurify, etc. But I wan complete safety. How? ChatGPT said: Thought for 16s Totally doable. Here’s a secure Lit setup with fully separate .html + .scss files , sanitized with DOMPurify , and rendered into the Shadow DOM without sacrificing performance. Folder layout src / lib/ safe- html .js components/ app-shell .html app-shell .scss app-shell .js 1) Install deps npm i dompurify npm i -D sass Vite will compile .scss . We’ll import the compiled CSS as text and attach it via adoptedStyleSheets (fast + memory-friendly). 2) app-shell.html (pure template file) Put your Carbon UI Shell markup here (no scripts). Example stub: < cds-header aria-label = "My App" > < cds-header-name prefix = "IBM" >[Platform] </ cds-header-name > < cds-header-glo...

Dataset related: discussions with chatGpt

what r various kind of free public datasets available. N how to read/access them online?
ChatGPT said:

There’s a huge range of free public datasets available across sectors like weather, maps, finance, health, government data, and more. Let me break it down clearly and explain how to access them.


1. Weather & Climate

DatasetDescriptionAccess method
ERA5 (ECMWF)Global reanalysis (historical weather, high resolution)Copernicus Climate Data Store (CDS) API, NetCDF files
GFS (NOAA)Global Forecast System, numerical weather predictionNOAA FTP/HTTP servers, GRIB2 files
NASA POWERSolar, temperature, precipitation dataREST API, CSV download
Open-Meteo datasetsDerived from ERA5/GFSAPI calls (JSON)

Reading: Most use formats like NetCDF, GRIB2, CSV. Python libraries: xarray, netCDF4, pygrib.


2. Maps / Geospatial

DatasetDescriptionAccess method
OpenStreetMapRoads, buildings, POIsOSM API, Overpass API, .osm PBF files
Natural EarthVector/raster map data (country boundaries, rivers)Shapefiles, GeoJSON downloads
SRTM / NASA DEMDigital elevation modelsHGT files, GDAL library
USGS Earth ExplorerSatellite imagery, elevationDownload via web or API

Reading: GIS tools: QGIS, GDAL, Python: geopandas, rasterio.


3. Finance / Economic

DatasetDescriptionAccess method
Yahoo FinanceStocks, indices, historical OHLCPython: yfinance, CSV export
FREDEconomic indicators (GDP, CPI, employment)REST API
Quandl (free datasets)Stocks, commodities, FXREST API, Python: quandl

Reading: CSV/JSON via API, Pandas in Python is common.


4. Government / Open Data

DatasetDescriptionAccess method
data.gov (USA)Census, health, energy, transportationCSV, JSON, APIs
data.gov.ukUK government dataCSV, JSON, APIs
India Open Government Data (data.gov.in)Population, health, agriculture, weatherCSV, JSON, APIs

Reading: Usually straightforward CSV/JSON → Python/Pandas, or via REST APIs.


5. Science / AI / ML Datasets

DatasetDescriptionAccess method
Kaggle datasetsImages, NLP, tabular, finance, healthcareKaggle API or download CSV/ZIP
UCI ML RepositoryClassic ML datasetsDirect download
Open Images / COCOImage recognition datasetsREST download / scripts
NOAA / NASA satellite datasetsWeather, climate, Earth observationFTP/HTTP, NetCDF, HDF5

Reading: Python libraries, or download locally.


6. How to read/access them online

  1. APIs / REST endpoints

    • Many datasets provide JSON, CSV, or XML via simple HTTP requests.

    • Examples: Open-Meteo, NASA POWER, FRED, Kaggle.

  2. FTP / HTTP download

    • Large datasets like GFS, ERA5, satellite imagery are served via FTP/HTTP.

  3. Specialized formats

    • NetCDF / GRIB2 → Python: xarray, netCDF4, pygrib

    • Shapefiles / GeoTIFF → Python: geopandas, rasterio; GIS: QGIS

  4. Cloud-hosted datasets

    • Google Cloud Public Datasets, AWS Open Data Registry, Microsoft Azure Open Datasets.

    • Can query directly with BigQuery (GCP), Athena (AWS), or download locally.


✅ Tips

  • Always check the license — some datasets are free for research/personal use, commercial use may be restricted.

  • For large datasets, consider cloud-based analysis to avoid high download/storage costs.

  • Many APIs provide time-based or spatial subsets, reducing the volume you need to fetch.


If you want, I can make a table of the most useful public datasets specifically for a weather/maps/finance app, including direct URLs and reading instructions, so you can immediately integrate them.

Do you want me to do that?

You said:

If you want, I can make a **table of the most useful public datasets specifically for a weather/maps/finance app**, including **direct URLs and reading instructions**, so you can immediately integrate them.

yes pls
ChatGPT said:

Here’s a curated table of useful free public datasets for a weather, maps, and finance app, with direct links and notes on how to access them:


1. Weather / Climate

DatasetDescriptionAccess / FormatNotes
ERA5 (ECMWF)Global reanalysis, historical weatherCopernicus Climate Data Store – NetCDFUse cdsapi in Python; can subset region/time to reduce size
GFS (NOAA)Global forecast model, every 6 hoursNOAA FTP – GRIB2Python: pygrib, xarray; hourly/daily forecasts
NASA POWERSolar, temperature, precipitationPOWER API – JSON / CSVREST API; regional queries supported
Open-MeteoFree weather forecast APIOpen-Meteo API – JSONNon-commercial free API; commercial requires license

2. Maps / Geospatial

DatasetDescriptionAccess / FormatNotes
OpenStreetMap (OSM)Roads, buildings, POIsOSM API / Overpass APICan query specific areas; data in XML/JSON
Natural EarthVector and raster mapsNatural Earth – Shapefile / GeoJSONGood for country borders, rivers, coastlines
SRTM / NASA DEMDigital elevation modelsUSGS Earth Explorer – HGT / GeoTIFFPython: rasterio or GIS tools
USGS Landsat / SentinelSatellite imageryUSGS Earth ExplorerHigh-resolution imagery; bulk download or API scripts

3. Finance / Economic

DatasetDescriptionAccess / FormatNotes
Yahoo FinanceStocks, indices, historical OHLCyfinance Python package – CSV / JSONFree, simple historical and current data
FRED (Federal Reserve)Economic indicators (GDP, CPI, unemployment)FRED API – JSON / CSVFree API; requires registration for API key
Quandl (free datasets)Stocks, commodities, FXQuandl API – CSV / JSONFree tier available; Python: quandl package
Alpha VantageStock / crypto / forexAlpha Vantage – JSON / CSVFree API key required; rate-limited

4. Cloud-hosted / Big Data options

ProviderDescriptionAccess methodNotes
GCP Public DatasetsWeather, satellite, financial, censusBigQueryQuery large datasets without local download; pay only for query
AWS Open Data RegistrySatellite imagery, weather, genomics, financeS3 / AthenaFree data storage; compute costs apply for querying
Microsoft Azure Open DatasetsWeather, demographics, public healthAzure Blob / SynapsePre-processed for analytics; some datasets are CSV / Parquet

Tips for integration

  1. Weather: Use APIs like Open-Meteo for forecasts; use ERA5/GFS for historical analysis.

  2. Maps: Use OSM/Overpass for POIs, roads; Natural Earth for basemap data; SRTM for elevation.

  3. Finance: Yahoo Finance, Alpha Vantage, FRED for real-time & historical financial data.

  4. Formats & tools:

    • Python: pandas, xarray, pygrib, rasterio, geopandas

    • GIS tools: QGIS for shapefiles/GeoTIFF

    • APIs: Always check rate limits & licensing


If you want, I can make a ready-to-use workflow diagram for a weather + maps + finance app, showing which datasets to call, when to cache, and how to integrate them efficiently.

Do you want me to do that?

Comments

Popular posts from this blog

C/C++ Postgres libpq execute query with params chatGpt example

PGresult *PQexecParams(PGconn *conn, const char *command, int nParams, const Oid *paramTypes, const char * const *paramValues, const int *paramLengths, const int *paramFormats, int resultFormat); give example ChatGPT said: ChatGPT Here’s a basic example demonstrating how to use PQexecParams in C++ to execute a parameterized query in PostgreSQL. Example: Inserting Data Using PQexecParams Let's assume we are inserting a row into a table called users with the following columns: id (integer) name (text) age (integer) cpp Copy code # include <iostream> # include <libpq-fe.h> # include <memory> # include <string> void checkResult (PGresult* res, PGconn* conn) { if ( PQresultStatus (res) != PGRES_COMMAND_OK) { std::cerr << "Execution failed: " << PQerrorMe...

Ubuntu Notes: Set up autossh as systemd useful-reminder commands

 sudo vim /etc/systemd/system/permanentAutossh.service ======================================== [Unit] Description=Keeps a tunnel to myOciFreeNat open After=network-online.target [Service] User=<username> Environment="AUTOSSH_GATETIME=0" ExecStart=/usr/bin/autossh -M 0 -q -N -o "ServerAliveInterval 60" -o "ServerAliveCountMax 3" -L 4322:127.0.0.1:5432 -i /<ssh_private_key_file_absolute_path> <username>@<ip_address> -p 22 [Install] WantedBy=multi-user.target ======================================== sudo systemctl daemon-reload sudo systemctl enable permanentAutossh sudo systemctl start permanentAutossh ================== sudo systemctl daemon-reload sudo systemctl restart permanentAutossh sudo systemctl status permanentAutossh ====================== sudo systemctl stop permanentAutossh sudo systemctl disable permanentAutossh sudo rm /etc/systemd/system/permanentAutossh.service

Notes - PostgreSql pgAdmin4: How to solve error when trying to login

To solve this issue Clear browser cookie, refresh page. This is how I solved this issue in my case